nag mv procustes (g03bcc)

1. Purpose

nag mv procustes (g03bcc) computes Procrustes rotations in which an orthogonal rotation is found so that a transformed matrix best matches a target matrix.

2. Specification

```
#include <nag.h>
#include <nagg03.h>
```
void nag_mv_procustes(Nag_TransNorm stand, Nag_RotationScale pscale, Integer n, Integer m, double x[], Integer tdx, double y[], Integer tdy, double yhat[], double r[], Integer tdr, double *alpha, double *rss, double res[], NagError *fail)

3. Description

Let X and Y be n by m matrices. They can be considered as representing sets of n points in an m dimensional space. The X matrix may be a matrix of loadings from say factor or canonical variate analysis, and the Y matrix may be a postulated pattern matrix or the loadings from a different sample. The problem is to relate the two sets of points without disturbing the relationships between the points in each set. This can be achieved by translating, rotating and scaling the sets of points. The Y matrix is considered as the target matrix and the X matrix is rotated to match that matrix.

First the two sets of points are translated so that their centroids are at the origin to give X_c and Y_c , i.e., the matrices will have zero column means. Then the rotation of the translated X_c matrix which minimizes the sum of squared distances between corresponding points in the two sets is found. This is computed from the singular value decomposition of the matrix:

 $X_c^T Y_c = U D V^T,$

where U and V are orthogonal matrices and D is a diagonal matrix. The matrix of rotations, R , is computed as:

 $R = I/V^T$

After rotation, a scaling or dilation factor, α , may be estimated by least-squares. Thus, the final set of points that best match Y_c is given by:

 $\hat{Y}_c = \alpha X_c R.$

Before rotation, both sets of points may be normalized to have unit sums of squares or the X matrix may be normalized to have the same sum of squares as the Y matrix. After rotation, the results may be translated to the original Y centroid.

The *i*th residual, r_i , is given by the distance between the point given in the *i*th row of Y and the point given in the *i*th row of \hat{Y} . The residual sum of squares is also computed.

4. Parameters

stand

Input: indicates if translation/normalization is required.

If **stand** = **Nag NoTransNorm** there is no translation or normalization.

If **stand** = **Nag Orig** there is translation to the origin.

If **stand** = **Nag OrigCentroid** there is translation to the origin and then to the Y centroid after rotation.

If **stand** = **Nag Norm** there is unit normalization.

If **stand** = **Nag OrigNorm** there is translation and normalization.

If $\text{stand} = \text{Nag_OrigNormCentroid}$ there is translation and normalization to Y scale, then translation to the Y centroid after rotation.

Constraint: **stand** = **Nag NoTransNorm**, **Nag Orig**, **Nag OrigCentroid**, **Nag Norm**, **Nag OrigNorm** or **Nag OrigNormCentroid**.

pscale

Input: indicates if least-squares scaling is applied after rotation.

If **pscale** = **Nag LsqScale** then scaling is to be applied.

If **pscale** = **Nag NotLsqScale** then no scaling is applied.

Constraint: **pscale** = **Nag LsqScale** or **Nag NotLsqScale**.

n

Input: the number of points, n. Constraint: $n \geq 1$.

m

Input: the number of dimensions, m. Constraints:

> $m \geq 1$. $m \leq n$.

x[n][tdx]

Input: the matrix to be rotated, X.

Output: if $stand = Nag NoTransNorm$, then x will be unchanged.

If **stand** = **Nag Orig**, **Nag OrigCentroid**, **Nag OrigNorm** or **Nag OrigNormCentroid**, then **x** will be translated to have zero column means.

If **stand** = **Nag Norm** or **Nag OrigNorm**, then **x** will be scaled to have unit sum of squares.

If **stand** = **Nag OrigNormCentroid**, then **x** will be scaled to have the same sum of squares as **y**.

tdx

Input: the last dimension of the array **x** as declared in the calling program. Constraint: $\mathbf{tdx} \geq \mathbf{m}$.

y[n][tdy]

Input: the target matrix, Y.

Output: if $stand = NagNoTransNorm$, then y will be unchanged.

If **stand** = **Nag Orig** or **Nag OrigNorm**, then **y** will be translated to have zero column means.

If **stand** = **Nag Norm** or **Nag OrigNorm**, then **y** will be scaled to have unit sum of squares.

If **stand** = **Nag OrigCentroid** or **Nag OrigNormCentroid**, then **y** will be translated and then after rotation, translated back. The output **y** should be the same as the input **y** except for rounding errors.

tdy

Input: the last dimension of the arrays **y** and **yhat** as declared in the calling program. Constraint: $tdy > m$.

yhat[n][tdy]

Output: the fitted matrix, \hat{Y} .

r[m][tdr]

Output: the matrix of rotations, R, see Section 6.

tdr

Input: the last dimension of the array **r** as declared in the calling program. Constraint: **tdr** \geq **m**.

alpha

Output: if **pscale** = **Nag LsqScale** the scaling factor, α ; otherwise **alpha** is not set.

rss

Output: the residual sum of squares.

res[n]

Output: the residuals, r_i , for $i = 1, 2, \ldots, n$.

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE BAD PARAM

On entry, parameter **stand** had an illegal value. On entry, parameter **pscale** had an illegal value.

NE INT ARG LT

On entry, **n** must not be less than 1: $\mathbf{n} = \langle value \rangle$. On entry, **m** must not be less than 1: $\mathbf{m} = \langle value \rangle$.

NE 2 INT ARG LT

On entry, $\mathbf{tdx} = \langle value \rangle$ while $\mathbf{m} = \langle value \rangle$. These parameters must satisfy $\mathbf{tdx} \geq \mathbf{m}$. On entry, $\textbf{tdy} = \langle \text{value} \rangle$ while $\textbf{m} = \langle \text{value} \rangle$. These parameters must satisfy $tdy > m$. On entry, $\mathbf{tdr} = \langle value \rangle$ while $\mathbf{m} = \langle value \rangle$. These parameters must satisfy $tdr \geq m$.

NE 2 INT ARG GT

On entry, $\mathbf{m} = \langle value \rangle$ while $\mathbf{n} = \langle value \rangle$. These parameters must satisfy $m \leq n$.

NE SVD NOT CONV

The singular value decomposition has failed to converge. This is an unlikely error exit.

NE NORM ZERO PTS

On entry, either **x** or **y** contains only zero-points (possibly after translation) when normalization is to be applied.

NE LSQ SCAL ZERO PTS

The fitted matrix \hat{Y} , contains only zero-points when least-squares scaling is applied.

NE ALLOC FAIL

Memory allocation failed.

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6. Further Comments

Note that if the matrix $X_c^T Y$ is not of full rank, then the matrix of rotations, R, may not be unique even if there is a unique solution in terms of the rotated matrix, \hat{Y}_c . The matrix R may also include reflections as well as pure rotations, see Krzanowski (1990).

If the column dimensions of the X and Y matrices are not equal, the smaller of the two should be supplemented by columns of zeros. Adding a column of zeros to both X and Y will have the effect of allowing reflections as well as rotations.

6.1. Accuracy

The accuracy of the calculation of the rotation matrix largely depends upon the singular value decomposition. See nag real svd (f02wec) for further details.

6.2. References

Krzanowski W J (1990) *Principles of Multivariate Analysis* Oxford University Press. Lawley D N and Maxwell A E (1971) *Factor Analysis as a Statistical Method* Butterworths (2nd Edition).

7. See Also

nag real svd (f02wec)

8. Example

Three points representing the vertices of a triangle in two dimensions are input. The points are translated and rotated to match the triangle given by $(0,0),(1,0),(0,2)$ and scaling is applied after rotation. The target matrix and fitted matrix are printed along with additional information.

8.1. Program Text

```
/* nag_mv_procustes (g03bcc) Example Program.
 *
 * Copyright 1998 Numerical Algorithms Group.
 *
 * Mark 5, 1998.
 *
 */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg03.h>
#define NMAX 3
#define MMAX 2
main()
{
  double r[MMAX][MMAX], res[NMAX],
  x[NMAX][MMAX], y[NMAX][MMAX], yhat[NMAX][MMAX];
  double alpha;
  double rss;
  Integer i, j, m, n;
  Integer \texttt{tdx} = \texttt{MMAX}, \texttt{tdr} = \texttt{MMAX}, \texttt{tdy} = \texttt{MMAX};char char_scale[2];
  char char_stand[2];
  Nag_TransNorm stand;
  Nag_RotationScale scale;
  Vprintf("g03bcc Example Program Results\n\n");
  /* Skip heading in data file */
  Vscan f("%*[^ \n[n]]");
  Vscanf("%ld",&n);
  Vscanf("%ld",&m);
  Vscanf("%s",char_stand);
  Vscanf("%s",char_scale);
  if (n \leq NMAX \&\& m \leq MMAX){
      for (i = 0; i < n; ++i){
           for (j = 0; j < m; ++j)
             Vscanf("%lf",&x[i][j]);
        }
       for (i = 0; i < n; ++i){
           for (j = 0; j < m; ++j)
```

```
Vscan f("\\2f", \&y[i][i]);
      }
    if (*char\_stand == 'N'){
        stand = Nag_NoTransNorm;
      }
    else if (*char\_stand == 'Z'){
        stand = Nag_Orig;
      }
    else if (*char\_stand == 'C')\mathbf{f}stand = Nag_OrigCentroid;
      }
    else if (*char_stand == 'U')
      \overline{f}stand = Nag_Norm;
      }
    else if (*char\_stand == 'S'){
        stand = Nag_OrigNorm;
      }
    else if (*char_stand == 'M')
      {
        stand = Nag_OrigNormCentroid;
      }
    if (*char\_scale == 'S'){
        scale = Nag_LsqScale;
      }
    else if (*char_scale == 'U')
      {
        scale = Nag_NotLsqScale;
      }
    g03bcc(stand, scale, n, m, (double *)x, tdx, (double *)y, tdy,
            (double *)yhat, (double *)r, tdr,
           &alpha, &rss, res, NAGERR_DEFAULT);
    Vprintf("\n Rotation Matrix\n\n");
    for (i = 0; i < m; ++i){
        for (j = 0; j < m; ++j)
          Vprintf(" %7.3f ",r[i][j]);
        Vprintf("\ln");
      }
    if (*char\_scale == 'S' || *char\_scale == 's'){
        Vprint(f''\n%s%10.3f\n''', "Scale factor = ",alpha);}<br>Vprintf("\n
                         Target Matrix \n\ln");
    for (i = 0; i < n; ++i)\mathcal{F}for (j = 0; j < m; ++j)
          Vprintf(" %7.3f ",y[i][j]);
        Vprintf("\n");
    }<br>Vprintf("\n
                        Fitted Matrix\n\ln");
    for (i = 0; i < n; ++i){
        for (j = 0; j < m; ++j)
          Vprintf(" %7.3f ",yhat[i][j]);
        Vprint(f("n");
      }
    Vprint(f("n%s%10.3f\n", "RSS = ",rss);exit(EXIT_SUCCESS);
  }
else
```

```
{
 Vprintf("Incorrect input value of n or m.\n");
 exit(EXIT_FAILURE);
}
```
8.2. Program Data

}

g03bcc Example Program Data 32CS 0.63 0.58 1.36 0.39 1.01 1.76 0.0 0.0 1.0 0.0 0.0 2.0

8.3. Program Results

g03bcc Example Program Results

Rotation Matrix

Scale factor = 1.556

Target Matrix

