
g03 – Multivariate Methods g03bcc

nag mv procustes (g03bcc)

1. Purpose

nag mv procustes (g03bcc) computes Procrustes rotations in which an orthogonal rotation is found
so that a transformed matrix best matches a target matrix.

2. Specification

#include <nag.h>
#include <nagg03.h>

void nag_mv_procustes(Nag_TransNorm stand, Nag_RotationScale pscale, Integer n,
Integer m, double x[], Integer tdx, double y[], Integer tdy,
double yhat[], double r[], Integer tdr, double *alpha, double *rss,
double res[], NagError *fail)

3. Description

Let X and Y be n by m matrices. They can be considered as representing sets of n points in an m-
dimensional space. The X matrix may be a matrix of loadings from say factor or canonical variate
analysis, and the Y matrix may be a postulated pattern matrix or the loadings from a different
sample. The problem is to relate the two sets of points without disturbing the relationships between
the points in each set. This can be achieved by translating, rotating and scaling the sets of points.
The Y matrix is considered as the target matrix and the X matrix is rotated to match that matrix.

First the two sets of points are translated so that their centroids are at the origin to give Xc and Yc,
i.e., the matrices will have zero column means. Then the rotation of the translated Xc matrix which
minimizes the sum of squared distances between corresponding points in the two sets is found. This
is computed from the singular value decomposition of the matrix:

XT
c Yc = UDV T ,

where U and V are orthogonal matrices and D is a diagonal matrix. The matrix of rotations, R, is
computed as:

R = UV T .

After rotation, a scaling or dilation factor, α, may be estimated by least-squares. Thus, the final
set of points that best match Yc is given by:

Ŷc = αXcR.

Before rotation, both sets of points may be normalized to have unit sums of squares or the X matrix
may be normalized to have the same sum of squares as the Y matrix. After rotation, the results
may be translated to the original Y centroid.

The ith residual, ri, is given by the distance between the point given in the ith row of Y and the
point given in the ith row of Ŷ . The residual sum of squares is also computed.

4. Parameters

stand
Input: indicates if translation/normalization is required.

If stand = Nag NoTransNorm there is no translation or normalization.
If stand = Nag Orig there is translation to the origin.
If stand = Nag OrigCentroid there is translation to the origin and then to the Y centroid
after rotation.
If stand = Nag Norm there is unit normalization.
If stand = Nag OrigNorm there is translation and normalization.
If stand = Nag OrigNormCentroid there is translation and normalization to Y scale,
then translation to the Y centroid after rotation.

Constraint: stand = Nag NoTransNorm, Nag Orig, Nag OrigCentroid, Nag Norm,
Nag OrigNorm or Nag OrigNormCentroid.

[NP3275/5/pdf] 3.g03bcc.1

nag mv procustes NAG C Library Manual

pscale
Input: indicates if least-squares scaling is applied after rotation.

If pscale = Nag LsqScale then scaling is to be applied.

If pscale = Nag NotLsqScale then no scaling is applied.

Constraint: pscale = Nag LsqScale or Nag NotLsqScale.

n
Input: the number of points, n.
Constraint: n ≥ 1.

m
Input: the number of dimensions, m.
Constraints:

m ≥ 1.
m ≤ n.

x[n][tdx]
Input: the matrix to be rotated, X .

Output: if stand = Nag NoTransNorm, then x will be unchanged.

If stand = Nag Orig, Nag OrigCentroid, Nag OrigNorm or Nag OrigNormCentroid,
then x will be translated to have zero column means.
If stand = Nag Norm or Nag OrigNorm, then x will be scaled to have unit sum of
squares.
If stand = Nag OrigNormCentroid, then x will be scaled to have the same sum of squares
as y.

tdx
Input: the last dimension of the array x as declared in the calling program.
Constraint: tdx ≥ m.

y[n][tdy]
Input: the target matrix, Y .

Output: if stand = Nag NoTransNorm, then y will be unchanged.

If stand = Nag Orig or Nag OrigNorm, then y will be translated to have zero column
means.
If stand = Nag Norm or Nag OrigNorm, then y will be scaled to have unit sum of
squares.
If stand = Nag OrigCentroid or Nag OrigNormCentroid, then y will be translated and
then after rotation, translated back. The output y should be the same as the input y
except for rounding errors.

tdy
Input: the last dimension of the arrays y and yhat as declared in the calling program.
Constraint: tdy ≥ m.

yhat[n][tdy]
Output: the fitted matrix, Ŷ .

r[m][tdr]
Output: the matrix of rotations, R, see Section 6.

tdr
Input: the last dimension of the array r as declared in the calling program.
Constraint: tdr ≥ m.

alpha
Output: if pscale = Nag LsqScale the scaling factor, α; otherwise alpha is not set.

rss
Output: the residual sum of squares.

3.g03bcc.2 [NP3275/5/pdf]

g03 – Multivariate Methods g03bcc

res[n]
Output: the residuals, ri, for i = 1, 2, . . . , n.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE BAD PARAM
On entry, parameter stand had an illegal value.
On entry, parameter pscale had an illegal value.

NE INT ARG LT
On entry, n must not be less than 1: n = 〈value〉.
On entry, m must not be less than 1: m = 〈value〉.

NE 2 INT ARG LT
On entry, tdx = 〈value〉 while m = 〈value〉.
These parameters must satisfy tdx ≥ m.
On entry, tdy = 〈value〉 while m = 〈value〉.
These parameters must satisfy tdy ≥ m.
On entry, tdr = 〈value〉 while m = 〈value〉.
These parameters must satisfy tdr ≥ m.

NE 2 INT ARG GT
On entry, m = 〈value〉 while n = 〈value〉.
These parameters must satisfy m ≤ n.

NE SVD NOT CONV
The singular value decomposition has failed to converge.
This is an unlikely error exit.

NE NORM ZERO PTS
On entry, either x or y contains only zero-points (possibly after translation) when
normalization is to be applied.

NE LSQ SCAL ZERO PTS
The fitted matrix Ŷ, contains only zero-points when least-squares scaling is applied.

NE ALLOC FAIL
Memory allocation failed.

NE INTERNAL ERROR
An internal error has occurred in this function. Check the function call and any array sizes.
If the call is correct then please consult NAG for assistance.

6. Further Comments

Note that if the matrix XT
c Y is not of full rank, then the matrix of rotations, R, may not be unique

even if there is a unique solution in terms of the rotated matrix, Ŷc. The matrix R may also include
reflections as well as pure rotations, see Krzanowski (1990).

If the column dimensions of the X and Y matrices are not equal, the smaller of the two should be
supplemented by columns of zeros. Adding a column of zeros to both X and Y will have the effect
of allowing reflections as well as rotations.

6.1. Accuracy

The accuracy of the calculation of the rotation matrix largely depends upon the singular value
decomposition. See nag real svd (f02wec) for further details.

[NP3275/5/pdf] 3.g03bcc.3

nag mv procustes NAG C Library Manual

6.2. References

Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press.
Lawley D N and Maxwell A E (1971) Factor Analysis as a Statistical Method Butterworths (2nd

Edition).

7. See Also

nag real svd (f02wec)

8. Example

Three points representing the vertices of a triangle in two dimensions are input. The points are
translated and rotated to match the triangle given by (0,0),(1,0),(0,2) and scaling is applied after
rotation. The target matrix and fitted matrix are printed along with additional information.

8.1. Program Text

/* nag_mv_procustes (g03bcc) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg03.h>

#define NMAX 3
#define MMAX 2

main()
{
double r[MMAX][MMAX], res[NMAX],
x[NMAX][MMAX], y[NMAX][MMAX], yhat[NMAX][MMAX];
double alpha;
double rss;

Integer i, j, m, n;
Integer tdx = MMAX, tdr = MMAX, tdy = MMAX;

char char_scale[2];
char char_stand[2];

Nag_TransNorm stand;
Nag_RotationScale scale;

Vprintf("g03bcc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n]");
Vscanf("%ld",&n);
Vscanf("%ld",&m);
Vscanf("%s",char_stand);
Vscanf("%s",char_scale);

if (n <= NMAX && m <= MMAX)
{
for (i = 0; i < n; ++i)
{
for (j = 0; j < m; ++j)
Vscanf("%lf",&x[i][j]);

}
for (i = 0; i < n; ++i)
{
for (j = 0; j < m; ++j)

3.g03bcc.4 [NP3275/5/pdf]

g03 – Multivariate Methods g03bcc

Vscanf("%lf",&y[i][j]);
}

if (*char_stand == ’N’)
{
stand = Nag_NoTransNorm;

}
else if (*char_stand == ’Z’)
{
stand = Nag_Orig;

}
else if (*char_stand == ’C’)
{
stand = Nag_OrigCentroid;

}
else if (*char_stand == ’U’)
{
stand = Nag_Norm;

}
else if (*char_stand == ’S’)
{
stand = Nag_OrigNorm;

}
else if (*char_stand == ’M’)
{
stand = Nag_OrigNormCentroid;

}

if (*char_scale == ’S’)
{
scale = Nag_LsqScale;

}
else if (*char_scale == ’U’)
{
scale = Nag_NotLsqScale;

}

g03bcc(stand, scale, n, m, (double *)x, tdx, (double *)y, tdy,
(double *)yhat, (double *)r, tdr,
&alpha, &rss, res, NAGERR_DEFAULT);

Vprintf("\n Rotation Matrix\n\n");
for (i = 0; i < m; ++i)
{
for (j = 0; j < m; ++j)
Vprintf(" %7.3f ",r[i][j]);

Vprintf("\n");
}

if (*char_scale == ’S’ || *char_scale == ’s’)
{
Vprintf("\n%s%10.3f\n"," Scale factor = ",alpha);

}
Vprintf("\n Target Matrix \n\n");
for (i = 0; i < n; ++i)
{
for (j = 0; j < m; ++j)
Vprintf(" %7.3f ",y[i][j]);

Vprintf("\n");
}

Vprintf("\n Fitted Matrix\n\n");
for (i = 0; i < n; ++i)
{
for (j = 0; j < m; ++j)
Vprintf(" %7.3f ",yhat[i][j]);

Vprintf("\n");
}

Vprintf("\n%s%10.3f\n","RSS = ",rss);
exit(EXIT_SUCCESS);

}
else

[NP3275/5/pdf] 3.g03bcc.5

nag mv procustes NAG C Library Manual

{
Vprintf("Incorrect input value of n or m.\n");
exit(EXIT_FAILURE);

}
}

8.2. Program Data

g03bcc Example Program Data
3 2 C S
0.63 0.58
1.36 0.39
1.01 1.76
0.0 0.0
1.0 0.0
0.0 2.0

8.3. Program Results

g03bcc Example Program Results

Rotation Matrix

0.967 0.254
-0.254 0.967

Scale factor = 1.556

Target Matrix

0.000 0.000
1.000 0.000
0.000 2.000

Fitted Matrix

-0.093 0.024
1.080 0.026
0.013 1.950

RSS = 0.019

3.g03bcc.6 [NP3275/5/pdf]

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

